Tag Archives: black holes

What If We Could See Through a Black Hole?

What If We Could See Through a Black Hole?

Get more insightful information about black holes with Pr. Clifford Johnson:

This star is about to transform into a black hole. And we’re about to travel inside it to see what’s on the other side. The only problem is that we’ll never be able to report our findings back to Earth. Because once you go inside a black hole, there’s no coming back. So maybe there’s a better way to find out what’s on the other side. Could we use a special telescope? How would light behave inside a black hole? And why could the first image of a black hole provide all the answers?

Transcript and sources:

Join this channel to get access to perks:

Subscribe to our second channel called “How to Survive”:

Watch more what-if scenarios:
Planet Earth:
The Cosmos:
Technology:
Your Body:
Humanity:

T-shirts and merch:
Suggest an episode:
Newsletter:
Feedback and inquiries:

What If elsewhere:
Instagram:
Twitter:
Facebook:
What If in Spanish:
What If in Mandarin:
Podcast:

Thank you to our supporter:
Batman

What If is a mini-documentary web series that takes you on an epic journey through hypothetical worlds and possibilities. Join us on an imaginary adventure through time, space and chance while we (hopefully) boil down complex subjects in a fun and entertaining way.

Produced with love by Underknown in Toronto:

source

What If a Quasi-Star Entered Our Solar System?

What If a Quasi-Star Entered Our Solar System?

This rogue star has been traveling the Universe. And now, it’s finally entering our Solar System. But this isn’t just any regular star. It’s known as a quasi-star and is one of the biggest stars in existence. What would happen if this star entered our Solar System? And how would Earth be affected?

Transcript and sources:

Subscribe to our second channel called “How to Survive”:

Can you translate this episode into another language? Add subtitles and we will link your YouTube channel in the description:

Watch more what-if scenarios:
Planet Earth:
The Cosmos:
Technology:
Your Body:
Humanity:

T-shirts and merch:
Suggest an episode:
Newsletter:
Feedback and inquiries:

What If elsewhere:
Instagram:
Twitter:
Facebook:
What If in Spanish:
What If in Mandarin:
Podcast:

What If is a mini-documentary web series that takes you on an epic journey through hypothetical worlds and possibilities. Join us on an imaginary adventure through time, space and chance while we (hopefully) boil down complex subjects in a fun and entertaining way.

Produced with love by Underknown in Toronto:

source

Nearest Black Hole To Earth Discovered!

Nearest Black Hole To Earth Discovered!

From where the black hole is, to what it could mean for our planet and system, and more! Join us as we show you the Nearest black hole to Earth that’s been discovered!
——————————————————————————————-
Subscribe for more videos:
Business Enquiries: lorenzovareseaziendale@gmail.com
——————————————————————————————-
In the vastness of space, there is no doubt that we haven’t found everything that is out there, but when something we “missed” turns out to be a black hole that is the closest one to Earth at present? That would be something that’s kind of shocking, and yet, that’s something that was indeed discovered in May 2020, the closest black hole (currently) to Earth.
The black hole, which is lurking 1,000 light-years from Earth in the southern constellation of Telescopium, belongs to a system with two companion stars that are bright enough to observe with the naked eye. But you won’t be able to see the black hole itself; the massive object has such a strong gravitational pull that nothing — not even light — can escape it. Which is one of the trademarks of a black hole, hence why it’s so hard to find them when you don’t know where they are based on the darkness of space.

The observations also showed that one of the two stars orbits the invisible object every 40 days, while the other star hangs out by itself at a much greater distance from the black hole.
This is important for various reasons. First and foremost, if the one star does indeed orbit the black hole every 40 days, then it’s possible that the black hole is draining the star slowly as it orbits it. Black holes are able to pull just about anything into its “core” because of its intense gravity, and that includes a star. So over time, depending on the distance between the star and the black hole, the mass and energy of the star will be “fed” to the black hole, which will make the star slowly die, while it actually expands the black hole. So having a virtually never-ending supply of food via a star would be quite the catch for a black hole. And eventually, over time, they can expand to the ranks of a “SuperMassive Black Hole” via absorbing enough objects, and these black holes can be well over the size of galaxies.
Getting back to the black hole in question. The scientists who found this one calculated that the object is a stellar-mass black hole — a black hole that forms from the collapse of a dying star — that’s about four times the mass of the sun.
“An invisible object with a mass at least four times that of the sun can only be a black hole,” Thomas Rivinius, a scientist with the European Southern Observatory who led the new study, said in a statement. “This system contains the nearest black hole to Earth that we know of,” he added.
Hearing that there is a black hole only 1000 light years from Earth might feel somewhat disconcerting to some, but also very unimportant to others. Even if it was just one light year away that would be quite a distance. But 1000? That’s nowhere near us in a certain scope of the galaxy we live in. For the record, a light year is about 6 trillion miles. So this black hole is 6000 trillion miles away from us right now.
For point of comparison, ffter HR 6819’s black hole, the nearest known black hole is about 3,000 light-years away from Earth in the constellation Monoceros. Which would mean it’s 18000 trillion miles away from Earth. That’s a long ways away.
However, there could still be others lurking even closer that have yet to be detected; astronomers estimate that there are millions of black holes in our galaxy alone. And the fact that it took until May 2020 to go and find this new black hole that was only 1000 miles away proves once again that the universe isn’t as well mapped out and “known” as once believed, or as expected by some people in the world.
If there is one that is 1000 light years away from Earth, what is to say that there isn’t one 500 light years away? Or 100? Or 50? Or 5? The truth is, we don’t know, we’re still finding out things about our own solar system, let alone the rest of our galaxy and the grander scale of the universe.
Plus, as noted, the nature of black holes is one that they don’t “like being seen”, so for all we know, there could be a small one right next door and we wouldn’t know about it until we noticed things around it acting strangely. Not unlike what happened with HR 6819’s black hole. Which in and of itself was very special upon its discovery.
The black hole in HR 6819 is one of the first stellar-mass black holes found in our galaxy that does not release bright X-rays while violently interacting with its companion stars, and the discovery could help researchers find other similarly “quiet” black holes in the Milky Way, according to the team who found it:

#InsaneCuriosity #Hr 6819 #blackholes

source

The Power Of Neutron Stars!

The Power Of Neutron Stars!

We know how terrifying and powerful black holes can be, but what comes second place in terms to it in terms of overall awesomeness? Join us today as we learn about neutron stars!

Subscribe for more videos:

One of the most popular outer space entities that pop culture love to revolve about is the black hole. We’ve seen various movies, TV programs, even some songs talk about how magnificent and mysterious they are. But what if black holes aren’t the only objects that we should be amazed with?

Of course we have a lot of picks for that matter, but the particular thing we would talk about today is the star that ranks number 1 in the universe in terms of density: the neutron stars.

Okay, astro fans, I can hear you argue and say “No, black holes are the densest objects in the universe!” But let me tell you this: remember how black holes work? They are effectively stars that collapsed to an almost zero volume, which results in their enormous gravitational force. If they effectively are dimensionless, can we really say that they are “objects”?

We can’t be really sure, and that’s something that only philosophy can answer, but while we’re here at the subject of definitions and what we actually know for certain, let’s just say the one we can categorize as the densest object, quote-unquote, is the neutron star.

And no, a neutron star is not a subatomic particle which grew to the size of the star. It isn’t also a bunch of neutrons agreeing to somehow collectively come together to form a humongous star. Although we can effectively say that a neutron star is like a giant atom, we’ll get to that later.

For now, I want to discuss how neutron stars are born and why they are like Phoenixes: how from the ashes of their old corpses, they rise up and fly with their new, replenished lives!

I know you already know this if you’re an astro buff, but to some of our viewers out there who are new, first of all, welcome! We hope we spark your curiosity more through our videos!

Anyway, stars were discovered to follow some kind of lifecycle, just like us living beings on Earth. They too, get born, have a childhood phase, then grow to adulthood, then also die, after certain circumstances.

A star’s usual routine involves fusing hydrogen into helium. Quite honestly, in its lifetime, that’s all it ever does. Now, as we know from basic nuclear physics, when we fuse atoms together, it creates energy. The energy that the fusion in the star creates is countered by the gravitational force towards its center, effectively keeping the balance and preventing it from collapsing towards its center. As long as this goes on, everything is good and well at a star’s life.

But of course, like all lives, stars experience a tipping point in theirs.

Remember how stars burn hydrogen to fuse to helium? Well, eventually, stars run out of hydrogen to fuse, so they fuse helium instead, forming elements such as carbon and oxygen. The energy pushes out the borders of the star causing it to move to its giant phase, until the pressure from electron degeneracy collapses the core of the star, and expelling its outer layer leaving a white dwarf.

For heavy mass stars, a number of times larger than the mass of our own Sun, the story is different.

The same as earlier, when the star runs out of hydrogen to fuse, it begins to fuse heavier elements. The difference this time is that the collapse caused by gravity is so extremely strong, way stronger than what we described earlier, that the fusion goes to Neon, to Oxygen, to Silicon, then finally to Iron.

As this happens, the outer layer of the star begins to fatten up faster as time goes by.

When the core of the star is finally iron, fusion can no longer take place, as iron is stubborn this way. We can imagine at this point, there is no more energy resulting from fusion. So what if that happens? The own weight of the star collapses in itself, effectively crushing it to the size of up to around a 10 kilometer radius. It’s like compressing the star to about the size of Malta!

Now, we know how subatomic particles don’t want to get near each other, right? We can practically say that an atom is made of empty space. However, the strength of the gravitational force that occurs when a heavy mass star collapses crushes this space in between, merging the protons and electrons together to form neutrons, with some neutrinos in excess.

But the extravaganza of energy doesn’t end there! See, neutrons hate being compressed towards one another, too. Just like protons and electrons. The collapse can only occur up to a certain moment where the neutrons form a lattice-like structure, the crushing in stops. By the way, this sudden halt is what we call neutron degeneracy pressure.

#InsaneCuriosity#NeutronStars #HowTheUniverseWorks

source

G Objects: A Strange New Discovery At The Galactic Centre!

G Objects: A Strange New Discovery At The Galactic Centre!

From what they are, to what they could mean for both black holes and the Milky Way Galaxy, join me as we unravel the mystery of G objects.
So…what exactly are G objects? To answer that, we have to go to the center of the Milky Way Galaxy, you know, the galaxy we live in right now? Well, at the center of that is a black hole, or to be more accurate a “radio source” that we BELIEVE to be a Supermassive Black Hole known as Sagittarius A. We technically know it’s a black hole because of readings and such, but as many scientists like to note, if you haven’t seen it or touched it yourself…it’s all theoretical.
Anyway, like you would expect from a black hole, the area around it is dark (as black holes don’t let light escape and thus they make a black mass of space) and anything that would get near it would get sucked in. But over the last few decades, astronomers have noted that there are things actually orbiting the black hole, which really shouldn’t be happening. And yet, they are, and they’re acting like objects that have never been viewed before in space or anything else.
Thus, these objects were labeled, “G Objects”, and of these objects that we have found, there are 6. There could be more, but we haven’t found them yet, so for now it’s just six, and the first two of these six were actually found decades ago.
Here’s what happened, scientists were studying the black hole and over the course of many years realized that two objects seemed to be orbiting the black hole, and yet, they weren’t acting right. The first belief of these objects in regards to what they were gas clouds. Which if we’re being honest would make sense as gas clouds are littered throughout space, including one that has the chemical that is used to make alcohol taste better (no, really, look it up.)
But there were some problems with this theory. First among them was that these two different gas clouds were 100 astronomical units across (one astronomical unit is the distance between the Earth and the sun), which made it REALLY weird that something that size would be orbiting a black hole without issue. And as they looked closer, they noticed that the clouds were getting stretched out as they were getting closer to the black hole. So in many ways, these gas clouds were acting like something else made of gas…
“These objects look like gas but behave like stars,” said physicist and astronomer Andrea Ghez of the University of California, Los Angeles.
Since the find of G1 and G2 (the names of the two gas clouds), the team led by Ghez has been studying the center of the galaxy for 20 years! And through that, they found G3-G6, confirming that there were many objects orbiting Sagittarius A…for some reason. What’s even weirder if you can believe it is the orbits of these six objects aren’t uniform in the slightest, they are vastly different. No unlike the planets in our solar system having much longer orbits than Earth.
How different are they? Depending on the object they can range from 170 years to 1,600 years! And…yes, there’s more, there’s always more, they STILL don’t know what these six objects are! How’s that for a kicker?
We are getting clues though as to what some of them MIGHT be. For example, in 2014, the object known as G2 entered a period of its orbit where it was closest to the black hole, and when that happened, some observations were made:
“G2 is a dusty red object associated with gas that shows tidal interactions as it nears its closest approach with the Galaxy’s central black hole.”
Not just that though, as they observed it from that point to where it moved to next, scientists noticed that it was changing shape based on where it was near the black hole:
“We had seen it before, but it didn’t look too peculiar until it got close to the black hole and became elongated, and much of its gas was torn apart. It went from being a pretty innocuous object when it was far from the black hole to one that was really stretched out and distorted at its closest approach and lost its outer shell, and now it’s getting more compact again.”
So what does that tell us? What does this mean as a whole? Does it truly help us determine what G2 is, or what any of the other G objects are?
Before we answer that, be sure to like the video and subscribe to the channel! That way you don’t miss any of our weekly videos!
The answer to what the G objects may be might be simpler than you might suspect. Because it doesn’t necessarily have to do with what the G objects are per se, but rather, with where they are located!
Confused? I’ll explain. There are many kinds of stars in the universe, we’ve even talked about some of them here on the channel before, but one of those types of stars is Binary. Binary stars are defined as..
To that end, some scientists believe that the other G Objects are possibly also gas byproducts from fused Binary Stars.

source

What’s On The Other Side Of A Black Hole?

What’s On The Other Side Of A Black Hole?

From what they are, to where they might go, and beyond! Join me as we explore the question of, “where do black holes lead to?”

Subscribe for more videos:

Before we dive into the potential pathways that Black Holes may have, it’s important to know exactly what they are. Because while you might have a loose definition as to what they are and what they do, they’re actually far more complex than you might realize. Which is why many people in NASA and other space programs are fascinated by them.
If you’re looking for a technical definition, this is how NASA describes Black Holes:
“A black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying.”
This singularity as it is often called is a bit of a mystery in space, and for a very good reason. You see, black holes can form in large sizes, small sizes, and sometimes they don’t even need a fully fledged star to form at all! Which is scary in the sense that it means black holes can form in various ways.
Plus, since no light can actually escape them, it means that they can’t technically be seen by anyone. That being said, it’s easy to “see their work”, as the intense gravity of the Black Holes is enough to stretch objects from their “starting point” and slowly pull them to the Black Hole. This is known as spaghettification, because like a stretched piece of spaghetti, the object will get thinner and thinner until nothings exists but particles. And if you think that a Black Hole is limited in what it can absorb, you would be wrong. Very wrong in fact. If it is close enough, it’ll break down a star, a planet, multiple stars and planets at once, etc. It’s a question of range more than anything.
But there’s a catch to that, as you won’t be able to observe the spaghettification yourself. Why? Remember, no light escapes the void that is the Black Hole, so because of that, you’ll see the last known position of the object that light allows you to see. It’ll seem like they’re stuck in place and slowly going away until they’re gone. When in fact, they or it will be slowly pulled apart.
As we noted earlier, one of the main ways for a Black Hole to be born is to have a star collapse upon itself with such pressure that a Black Hole is a result. However, technically speaking, just about anything in the universe can become a Black Hole. How’s that for a scary thought?
It’s true though, and that’s one of the big “scaling” factors that you need to take into account when you’re talking about Black Holes. In fact, there’s actually a scarier thought that you need to consider, and that’s that black holes could technically be all around you right now. The only reason you’re not feeling their affects is that they’re not large enough to exert their own gravity.
The scale of a Black Hole is referred to as the Schwarzschild Radius. And becoming a Black Hole is impendent on you becoming so small and so dense that you can fit into this radius, and then potentially expand upon it. For example, a human being can become a Black Hole if condensed enough. However, the pressure needed to do that would not only be enormous, you could have to be shrunk 1 sextillion times smaller than a grain of sand. That’s REALLY small.

But that raises the question that we posed earlier, mainly, where do black holes lead to? I mean, if they can be of all sizes, and be anywhere from the size of a massive galaxy to the spec of sand on a beach, how can they lead to anywhere? How does that work? Would it work at all?
In the words of one scientist, “Who knows?”
“Falling through an event horizon is literally passing beyond the veil — once someone falls past it, nobody could ever send a message back,” he said. “They’d be ripped to pieces by the enormous gravity, so I doubt anyone falling through would get anywhere.”
Allow me to back up a little bit. Remember the whole “spagheticfication” thing I was talking about earlier? Well, the place that you would be “stretched to” is the horizon line of the black hole. Think of a black hole like a funnel. The big end of the funnel is the black hole that you “see” in space, and the rest of it is the core of the black hole that is hidden beneath its intense gravity. Now, if black holes DID lead somewhere, then like the funnel, you would have an access point through the core that you could go to. You get it?
The problem here is that most scientists believe based on their understanding of black holes that a horizon line is what awaits you at the end. So if you think about the funnel again, think about pinching the back end of it so that nothing could get out of said funnel. That’s what a lot of people think is in the center of a black hole, a literal end point. Which would be a problem for those who think it would lead anywhere…because it wouldn’t. It would end, o

source