Tag Archives: milky way

What Is Our Place In The Milky Way?

What is our place in the Milky Way? And our place in the Universe? In ancient times, many people had the idea our planet Earth to be at the centre of the Universe, as stated by Aristotle and Ptolomeus in their ptolemaic – aristotelic concept of universe: according to this model, Earth is at the center of the universe and all the other celestial bodies orbit around it. Today lots of people think the same. But is this really the case? To answer this question, let’s try to to a travel in the universe, through space and time; we will start our travel from our planet to reach, in the end, the extreme boundaries of the universe.
Subscribe for more videos:
Business Enquiries: Lorenzovareseaziendale@gmail.com
During the 1600s, Galileo Galilei, the famous Italian astronomer, was one of the first people, during modern age, to have some doubts about the geocentric model of universe: thanks to telescopic observations, he was able to demonstrate our Earth is not at the rotation centre of planets and the Sun, but really it is the Sun itself. Moreover, observing planet Jupiter, he discovered that the giant planet is the rotation center for its moons. So, Galileo became aware that the center of the Solar System was the Sun, not the Earth!

The Solar System is made by a star, the Sun, eight planets and different types of minor celestial bodies, like comets, asteroids and dwarf planets.
Well, the Earth isn’t at the center of the Solar System, maybe is the closest planet to our Sun? No it isn’t, because it is only the third planet from the Sun: the closest planet to our star is Mercury, followed by Venus and then Earth. The Earth moves around the Sun, our star, just like all the other celestial bodies in the Solar System do: this implies that the Sun, and not our planet, is the center of rotation of the Solar System! The Earth takes a year, 365 days, to travel its orbit, and its average distance from the Sun is 150 million kilometers, which is the measure unit of distances in the Solar System known as the astronomical unit and abbreviated AU. Why do we talk about average distance? Because the orbit traveled by the Earth around the Sun is not circular but elliptical, and this means that there will be an aphelion (i.e. the point of the Earth’s orbit farthest from the Sun, just over 1 AU away from it) and a perihelion (the point of Earth’s orbit closest to the Sun, just under 1 AU). An alternative way to define the astronomical unit passes through the light time, in particular we can say that the average distance Earth – Sun is equal to about 8 light minutes: this means that sunlight takes 8 minutes to arrive on Earth, so that the sunlight we see at a certain moment is not that of that moment but it is the sunlight which left from the Sun 8 minutes earlier! In other words: if the sun went out for example at 2.30 pm, we would only notice it at 2.38 pm! Or again: if you could travel aboard the Star Wars Millennium Falcon it would take you only 8 minutes to travel from the Sun to the Earth (when in reality it takes a few years). To give a more concrete idea of the dimensions of the Solar System: if the Sun were a sphere with a diameter of 14 cm, Pluto would be at 700 m from the Sun, like seven regular soccer fields!

The nearest celestial body to Earth is the Moon, our satellite: to reach it you should take three days off! It’s the same time taken by Apollo astronauts to cover the distance of nearly 400 thousand kilometers that separate Moon and Earth. But if you had Star Trek Enterprise, and travel at maximum curvature, you would only take less than 2 seconds to reach the Moon!

“If You happen to see any content that is yours, and we didn’t give credit in the right manner please let us know at Lorenzovareseaziendale@gmail.com and we will correct it immediately”

“Some of our visual content is under an Attribution-ShareAlike license. ( in its different versions such as 1.0, 2.0, 3,0, and 4.0 – permitting commercial sharing with attribution given in each picture accordingly in the video.”

Credits: Mark A. Garlick / markgarlick.com
Credits: Ron Miller
Credits: Nasa/Shutterstock/Storyblocks/Elon Musk/SpaceX/ESA
Credits: Flickr
Credits: ESO

#InsaneCuriosity #MilkyWay #Galaxies


What is the Great Attractor?

What is the Great Attractor?

Is there anything in the universe that’s just so eccentric, so breathtaking, and so beyond our understanding, that it gets a badass name? That’s what we’ll find out together in today’s episode! What is the Great Attractor?
Subscribe for more videos:
Business Enquiries: Lorenzovareseaziendale@gmail.com
Okay, let’s do a bit of thought experiment to kick off the show.

I bet everybody here has been to the mall, right? Have you ever experienced a time when you are walking, and suddenly, you saw a bunch of people moving towards something?

Now, you don’t know what it is. You don’t know if it’s some food stall that’s really hitting the sales, or a new product being sold. You just know that it’s pulling people towards it. And to top it all off, you, with your ever curious mind, gets drawn to it as well! So, before you know it, you start walking.

It’s crazy, right? You don’t know why people are gathering, and yet you are attracted to that place where you’re absolutely clueless about what’s there to see, or even if what’s there could harm you. You just know that you’re curious and you want to find out. Something that you don’t understand is too charismatic for you to resist.

That, my dear friends, is the characteristic of our topic for today. A weird thing in space that is so bizarre, so unimaginably weird, and so difficult to grasp, that all we can do is to give it an appropriate name, The Great Attractor.

I hope we can say that The Great Attractor is a gigantic floating Harry Styles or Captain Ri from CLOY lightyears away in space from us, but that’s the problem. We don’t exactly know what it is. But we don’t actually know, so why not? It may actually be Henry Cavill in space.

Is he still popular now? I’m not keeping up with Hollywood stuff. Moving on.

Okay, here’s what we know about it so far. We don’t know what it is, but we know that it’s there. We’re sure it’s there, and we can see signs that it’s there.

It’s like having a gigantic stuffed toy in a very, very dark room. We can touch the fur, and we can feel how soft it is, maybe even smell it a bit, but that’s all the information we have. We’re not sure if it’s really a stuffed toy. It could be something else entirely.

So what are our observations leading us to think that it’s there? What are our touches to the fur and our sniffs to it?

We know that Hubble’s observations in 1929 lead us to believe that the universe is actually expanding, after he realized that a lot of galaxies are moving away from us. And not just moving away, it’s moving at an extremely fast pace faster than the speed of light.

This phenomenon is now something that we know as the Hubble flow: the movement of the galaxies due to the expansion of the universe.

To make that more visually appealing, say that you have a balloon that hasn’t been blown up yet. To add a little more playfulness, let’s say you decided to draw some random dots on it.

Now, you can measure the distance between the dots you made in the balloon, right? Okay, say at this point, you find a pump and you start blowing air into the balloon. Naturally, the balloon expands. But what else is happening here? The dots you drew earlier are now moving apart from one another. If earlier, one dot is a centimeter from another, now it’s maybe 5 centimeters.

The dot didn’t move, but it’s now farther away from the other because where it’s drawn at expanded.

The universe does this as well. It expands in a way similar to what we described in the balloon analogy. The galaxies are moving apart from one another at some velocity, so we expect them to be farther and farther from one another at a constant rate, right?

Oddly, this is not what scientists observe to be actually happening. Instead, they see a lot of galaxies seemingly gravitate towards a region in space. Even our very own Milky Way galaxy! The Great Attractor!

What scientists are sure of is that whatever it is, it’s definitely one powerful gravitational anomaly.

So how exactly did scientists arrive at this conclusion? That we are heading something so mysterious and puzzling?

Well, firstly, there’s this thing called expectation. The universe is expanding at an astoundingly fast rate of 2.2 million kilometers per hour!

So keeping this in mind, then, if we try to measure the speed at which a nearby galaxy is moving away from us, say, Andromeda, then we ought to get that speed right? Apparently not. This is one of the first odd measurements scientists found.

#InsaneCuriosity #TheGreatAttractor #HowTheUniverseWorks


9 Strangest Galaxies In The Universe!

9 Strangest Galaxies In The Universe!

Subscribe for more videos:

From galaxies that are shaped weirdly, to ones that have unique properties, join me as I show you the strangest galaxies in the universe!
9. ESO 137-001
I want you to think about the “shapes” of universes. Depending on the pictures you look at, you likely think of things like the spirals that many galaxies are believed to be shaped as. But in the case of ESO 137-001, that isn’t exactly the case. Because this galaxy…is shaped like a Jellyfish.
No, really, the spiral form of the galaxy is still there. BUT, it also has a “tail” that is formed by stars that are in its “wake” if you will, and it’s quite a tail as it extends over 260,000 light years into space!

8. NGC 1052-DF2
Ok, this one was weird in context as I’ll explain. You see, in 2018, the Hubble Space Telescope (one of the most important pieces of technology we have in terms of mapping space) found a galaxy known as NGC 1052-DF2. When scientists and astronomers looked at the galaxy though, they felt that something was missing. Mainly, there was a lack of Dark Matter, and that should’ve been impossible.
“Dark matter is conventionally believed to be an integral part of all galaxies — the glue that holds them together and the underlying scaffolding upon which they are built,” explains co-author Allison Merritt from Yale University and the Max Planck Institute for Astronomy, Germany.

7. MACS 2129-1
The place known as MACS 2129-1 is definitely a galaxy that stands out for a whole host of reasons. Not the least of which is because it’s what’s known as a “No life Galaxy”. To be clear, there is life in the form of stars and planets within it, that’s not the issue. But, the galaxy is no longer “active”, meaning that it’s not making anymore stars despite it being over 10 billion years old.

6. The Andromeda galaxy
Arguably the most famous galaxy in the universe outside the Milky Way, the Andromeda Galaxy is one that has led many people to wonder what is just outside our own galaxy, mainly because it’s our neighbor. Not just that, it’s our largest neighbor by a wide margin, and there’s a very good reason for that. Mainly, the Andromeda Galaxy is known as a “cannibal galaxy”.
What does that mean? Well, as the title describes, it actually collides with and devours other galaxies in order to make itself bigger:
“Andromeda has a much bigger and more complex stellar halo than the Milky Way, which indicates that it has cannibalized many more galaxies, possibly larger ones,” lead study author Dougal Mackey, an astronomer at Australian National University, said in a statement. “Knowing what kind of a monster our galaxy is up against is useful in finding out the Milky Way’s ultimate fate.”

So, remember the Jellyfish Galaxy we talked about a little while ago? Well, meet its cousin, the Tadpole Galaxy. This one is very on the nose in terms of its name because of the fact that it has a LONG tail that is attached to a body that reminds scientists of a tadpole. So looking at this you may wonder, “How did this happen?” According to the ones who found it, it’s a remnant of sorts from a galaxy that collided with another.
4. W2246-0526
If this list has shown you anything so far, it’s that the state of our universe is very much in a state of flux. But what you might not realize is that while some galaxies do collide with each other, others go and just steal things from one another. They alter shapes, steal stars, and sometimes even become brighter. Which is the case with W2246-0526:

3. Little Cub
Found in the Ursa Major Constellation, there is a dwarf galaxy known fondly as the “Little Cub”, and it’s one that has scientists very curious despite its impending doom. Why is that? Because the “Little Cub” as it is known is a galaxy that is dormant, and it has remained unchanged for about 13.7 billion years. If you know the alleged history of the universe, that would mean that it has been the same since the beginning of the universe more or less.

2. The Petal Galaxy
Let’s dig back into the visuals of galaxies for a bit. There are many galaxies out there in the universe that are growing at various rates as we’ve shown. But ESO 381-12 is different. Not only is this one growing, it’s growing in a way and in a shape that is truly baffling scientists. How so? Well, it looks like a flower in bloom, and the “petals” as they are known aren’t symmetrical.

1. Messier 83
15 million light years away in the Hydra is the galaxy known as Messier 83, and it is a galaxy that has caught a lot of people’s eyes. Mainly because those who have looked at it noticed that it has “two hearts”:

#InsaneCuriosity #StrangestGalaxies #HowTheUniverseWorks


There May Be More Than 36 Alien Civilizations In The Milky Way!

There May Be More Than 36 Alien Civilizations In The Milky Way!

From the potential for more than one alien society to live in the Milky Way Galaxy, to the proof that they might just be out there waiting for us. Join us as we explore the fact that There may be more than 36 Alien Civilizations In The Milky Way!
Subscribe for more videos:
Business Enquiries: lorenzovareseaziendale@gmail.com
If intelligent life is out there…why haven’t they found us yet? Or why haven’t we found them yet? This is the crux of something known as the Fermi Paradox. A scientific and even philosophical question that dares to ask the question of WHY we haven’t found alien civilizations in one form or another. Granted, humanity has happily “showed” what it COULD be like to meet them via television shows, movies, cartoons, comics and novels and more. But in term of definitive proof we don’t have it…yet.
Over the course of human history there have been many “sightings” or “proof” that aliens might be out there. This is why Area 51 is such a pop culture item as well as a real-life one because we know the base is there, and yet we don’t know what’s inside it. Thus, it MUST be the place where aliens are being kept, or so some people believe.
The other thing to note here is that the sightings of aliens or alien craft is not new or even recent. If you look back at paintings going back centuries or ancient texts or drawings on caves you’ll see references to beings and craft that clearly weren’t from our world, yet someone had the image in the sights to draw about it or write it down.
But the irony, the true irony is that we may be closer to these alien civilizations than we previously believed, as they could be right here in the Milky Way Galaxy.
According to a new study, there could be more than 30 civilizations capable of long-distance communication here in the Milky Way. This work, led by researchers at the University of Nottingham, assumed that intelligent life not only exists off-Earth, but develops on other planets similarly to how it does on Earth.
“There should be at least a few dozen active civilizations in our galaxy under the assumption that it takes 5 billion years for intelligent life to form on other planets, as it did on Earth,” Christopher Conselice, an astrophysicist at the University of Nottingham who led this research, said in a statement. “The idea is looking at evolution, but on a cosmic scale.”
This is a very unique way of looking at things, and many would see this as an “evolution” of thought in regards to alien life. Various institutions, including NASA and other space agencies, have accepted that alien life COULD be out there, but obviously hadn’t found proof of it yet. But what if they were just looking at it in the wrong way? Could this study be the proof we need that aliens do exist?
Well that’s a tricky question, and it brings up the question of what this team at Nottingham did to try and figure out how many civilizations could be out there the Milky Way.
To estimate the number of intelligent civilizations in our galaxy, the team took into account two major “Astrobiological Copernican limits”, or conditions that such an “intelligent” civilization would depend on.

For one of these limiting factors, the researchers used Earth, where life began approximately 4.54 billion years ago, as an example. They assumed that intelligent life most likely forms in less than 5 billion years. Again, using Earth as a baseplate which is fair given the context of this study.
The other factor that they figured into their study was that of the stars around the planets life could be on. They estimated that a planet with intelligent life would orbit a star like our sun (again, Earth as the template). This sun-like star would have “a metal content equal to that of the sun … (the sun is relatively speaking quite metal-rich),” Tom Westby, an assistant professor at the University of Nottingham and first author on the paper said in the same statement.
In addition to these two Astrobiological Copernican limiting criteria, the scientists factored in technological capability. The researchers figured that the number of “intelligent” civilizations depends on technological prowess, specifically how long they have been sending out some sort of signal into space (anything from radio transmissions from orbiting satellites to television). So, using our civilization as an example for a potential extraterrestrial one, the researchers estimated that humans have been “technologically advanced” for about 100 years.
Which if you think about it is actually kind of fair. If you look at our world right now, we’re reveling in technology, but go back to 1920?

#InsaneCuriosity #AlienLife


What Lies Beyond Our Solar System?

What Lies Beyond Our Solar System?

From the planets, to the stars, to the systems, to the great unknown of the universe, join us as we explore what lies beyond our solar system!
Subscribe for more videos:
Business Enquiries: lorenzovareseaziendale@gmail.com
8. The Scope Of Our Own Solar System
Before we look beyond it, let’s take stock of our own solar system and what it all is like. There are 8 definitive planets (and more than that if you count Dwarf Planets like Pluto), we have one star, The Sun, that we orbit around, and within the confines of our system are asteroid belts, various rocks of various sizes, tons of solar rays and radiation, and a whole lot more.
Just in our solar system there is a LOT of stuff to explore. Which is sometimes hard to find because the length of our solar system is about 287.46 billion kilometers long. And even in the year 2020 we’re STILL finding out things about our solar system that are shocking and surprising. But of course, the main goal of humanity as a whole is to do what many have thought is unthinkable. To go BEYOND our solar system and to not just see it, but explore it, and live upon it. To truly become a species that is intergalactic instead of just living in one very small part of the universe.
7. What Lies Immediately Beyond Our Solar System
So let’s posit for a moment that you are able to go and get out of the reach of our solar system. Behind the Kuiper Belt, beyond the Heliosphere, what are you going to find when you reach that edge beyond? What will you see? What will you experience?
The honest and very simple answer…is nothing. Because you’ll be in what is known as Intergalactic Space. Or, the space between galaxies and systems. But to be clear, just because you don’t see anything, doesn’t mean that nothing is there.
“If you took a cubic meter, there would be less than one atom in it,” Michael Shull, an astronomer at the University of Colorado Boulder, told Live Science. “But when you add it all up, it’s somewhere between 50 and 80% of all the ordinary matter out there.”
Scientists are honestly deeply interested in this matter, or “Intergalactic Medium” because of how they feel it forms and even replenishes certain systems via the gas that it provides. The reason for this is that the medium is mostly hot, ionized hydrogen (hydrogen that has lost its electron) with bits of heavier elements such as carbon, oxygen and silicon thrown in. While these elements typically don’t glow bright enough to be seen directly, scientists know they’re there because of the signature they leave on light that passes by.
“IGM is the gas that feeds star formation in galaxies,” Shull said. “If we didn’t still have gas falling in, being pulled in by gravity, star formation would slowly grind to a halt as the gas [in the galaxy] gets used up.”
But because of its small numbers, when you’re floating through space, you’re almost literally floating through empty space. Which is why many note that all the planets and stars and celestial objects only fill up about 5% of the known universe. Everything else is minor matter, Dark Energy and Dark Matter.
6. Systems Beyond Our Own
Ok, so let’s say that you are able to reach another system. What would it be like? Well, that would depend on what you land upon.
Because there are at least 100 billion stars in the Milky Way, a spiral galaxy about 100,000 light-years across. The stars are arranged in a pinwheel pattern with four major arms, and we live in one of them, about two-thirds of the way outward from the center. Most of the stars in our galaxy are thought to host their own families of planets. Thousands of these extrasolar planets (or exoplanets) have been discovered so far, with thousands more candidates detected and awaiting confirmation. Many of these newly discovered planetary systems are quite different from our own.
In fact, part of the fun of astronomy in the eyes of many is going and seeing if you can indeed find a new planet, or star that hadn’t been noticed before, and seeing what details you notice about it. In fact, various agencies from NASA to the ESA and more have made their own satellites and probes and such that they’ve launched into space or our atmosphere to try and get better looks at planets and stars and see what we can find.
Some of the highlights for sure are many planets that are “Earth-Like” in structure or form or shape. Numerous kinds of stars from dwarf stars to binary stars, to Pulsars, Supernovas and more. They’ve found black holes at the center of most galaxies, and that’s still only scratching the surface of things.
4. Exoplanets
#InsaneCuriosity #TheSolarSystem #TheEdgeOfTheUniverse


G Objects: A Strange New Discovery At The Galactic Centre!

G Objects: A Strange New Discovery At The Galactic Centre!

From what they are, to what they could mean for both black holes and the Milky Way Galaxy, join me as we unravel the mystery of G objects.
So…what exactly are G objects? To answer that, we have to go to the center of the Milky Way Galaxy, you know, the galaxy we live in right now? Well, at the center of that is a black hole, or to be more accurate a “radio source” that we BELIEVE to be a Supermassive Black Hole known as Sagittarius A. We technically know it’s a black hole because of readings and such, but as many scientists like to note, if you haven’t seen it or touched it yourself…it’s all theoretical.
Anyway, like you would expect from a black hole, the area around it is dark (as black holes don’t let light escape and thus they make a black mass of space) and anything that would get near it would get sucked in. But over the last few decades, astronomers have noted that there are things actually orbiting the black hole, which really shouldn’t be happening. And yet, they are, and they’re acting like objects that have never been viewed before in space or anything else.
Thus, these objects were labeled, “G Objects”, and of these objects that we have found, there are 6. There could be more, but we haven’t found them yet, so for now it’s just six, and the first two of these six were actually found decades ago.
Here’s what happened, scientists were studying the black hole and over the course of many years realized that two objects seemed to be orbiting the black hole, and yet, they weren’t acting right. The first belief of these objects in regards to what they were gas clouds. Which if we’re being honest would make sense as gas clouds are littered throughout space, including one that has the chemical that is used to make alcohol taste better (no, really, look it up.)
But there were some problems with this theory. First among them was that these two different gas clouds were 100 astronomical units across (one astronomical unit is the distance between the Earth and the sun), which made it REALLY weird that something that size would be orbiting a black hole without issue. And as they looked closer, they noticed that the clouds were getting stretched out as they were getting closer to the black hole. So in many ways, these gas clouds were acting like something else made of gas…
“These objects look like gas but behave like stars,” said physicist and astronomer Andrea Ghez of the University of California, Los Angeles.
Since the find of G1 and G2 (the names of the two gas clouds), the team led by Ghez has been studying the center of the galaxy for 20 years! And through that, they found G3-G6, confirming that there were many objects orbiting Sagittarius A…for some reason. What’s even weirder if you can believe it is the orbits of these six objects aren’t uniform in the slightest, they are vastly different. No unlike the planets in our solar system having much longer orbits than Earth.
How different are they? Depending on the object they can range from 170 years to 1,600 years! And…yes, there’s more, there’s always more, they STILL don’t know what these six objects are! How’s that for a kicker?
We are getting clues though as to what some of them MIGHT be. For example, in 2014, the object known as G2 entered a period of its orbit where it was closest to the black hole, and when that happened, some observations were made:
“G2 is a dusty red object associated with gas that shows tidal interactions as it nears its closest approach with the Galaxy’s central black hole.”
Not just that though, as they observed it from that point to where it moved to next, scientists noticed that it was changing shape based on where it was near the black hole:
“We had seen it before, but it didn’t look too peculiar until it got close to the black hole and became elongated, and much of its gas was torn apart. It went from being a pretty innocuous object when it was far from the black hole to one that was really stretched out and distorted at its closest approach and lost its outer shell, and now it’s getting more compact again.”
So what does that tell us? What does this mean as a whole? Does it truly help us determine what G2 is, or what any of the other G objects are?
Before we answer that, be sure to like the video and subscribe to the channel! That way you don’t miss any of our weekly videos!
The answer to what the G objects may be might be simpler than you might suspect. Because it doesn’t necessarily have to do with what the G objects are per se, but rather, with where they are located!
Confused? I’ll explain. There are many kinds of stars in the universe, we’ve even talked about some of them here on the channel before, but one of those types of stars is Binary. Binary stars are defined as..
To that end, some scientists believe that the other G Objects are possibly also gas byproducts from fused Binary Stars.